Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We study a hinted heterogeneous multi-agent multi-armed bandits problem (HMA2B), where agents can query low-cost observations (hints) in addition to pulling arms. In this framework, each of the M agents has a unique reward distribution over K arms, and in T rounds, they can observe the reward of the arm they pull only if no other agent pulls that arm. The goal is to maximize the total utility by querying the minimal necessary hints without pulling arms, achieving time-independent regret. We study HMA2B in both centralized and decentralized setups. Our main centralized algorithm, GP-HCLA, which is an extension of HCLA, uses a central decision-maker for arm-pulling and hint queries, achieving O(M^4 K) regret with O(M K log T) adaptive hints. In decentralized setups, we propose two algorithms, HD-ETC and EBHD-ETC, that allow agents to choose actions independently through collision-based communication and query hints uniformly until stopping, yielding O(M^3 K^2) regret with O(M^3 K log T) hints, where the former requires knowledge of the minimum gap and the latter does not. Finally, we establish lower bounds to prove the optimality of our results and verify them through numerical simulations.more » « lessFree, publicly-accessible full text available April 11, 2026
- 
            We study the cooperative asynchronous multi-agent multi-armed bandits problem, where each agent's active (arm pulling) decision rounds are asynchronous. That is, in each round, only a subset of agents is active to pull arms, and this subset is unknown and time-varying. We consider two models of multi-agent cooperation, fully distributed and leader-coordinated, and propose algorithms for both models that attain near-optimal regret and communications bounds, both of which are almost as good as their synchronous counterparts. The fully distributed algorithm relies on a novel communication policy consisting of accuracy adaptive and on-demand components, and successive arm elimination for decision-making. For leader-coordinated algorithms, a single leader explores arms and recommends them to other agents (followers) to exploit. As agents' active rounds are unknown, a competent leader must be chosen dynamically. We propose a variant of the Tsallis-INF algorithm with low switches to choose such a leader sequence. Lastly, we report numerical simulations of our new asynchronous algorithms with other known baselines.more » « lessFree, publicly-accessible full text available March 6, 2026
- 
            Free, publicly-accessible full text available January 22, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available